假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一躺快速排序的算法是:
1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;
2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];
3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;
4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;
5)、重复第3、4步,直到I=J;
例如:待排序的数组A的值分别是:(初始关键数据X:=49)
A[1] A[2] A[3] A[4] A[5] A[6] A[7]:
49 38 65 97 76 13 27
进行第一次交换后: 27 38 65 97 76 13 49
( 按照算法的第三步从后面开始找
进行第二次交换后: 27 38 49 97 76 13 65
( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时I:=3 )
进行第三次交换后: 27 38 13 97 76 49 65
( 按照算法的第五步将又一次执行算法的第三步从后开始找
进行第四次交换后: 27 38 13 49 76 97 65
( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时J:=4 )
此时再执行第三不的时候就发现I=J,从而结束一躺快速排序,那么经过一躺快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。
快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最后把此数据序列变成一个有序的序列,根据这种思想对于上述数组A的快速排序的全过程如图6所示:
初始状态 {49 38 65 97 76 13 27}
进行一次快速排序之后划分为 {27 38 13} 49 {76 97 65}
分别对前后两部分进行快速排序 {13} 27 {38}
结束 结束 {49 65} 76 {97}
49 {65} 结束
结束
图6 快速排序全过程
1)、设有N(假设N=10)个数,存放在S数组中;
2)、在S[1。。N]中任取一个元素作为比较基准,例如取T=S[1],起目的就是在定出T应在排序结果中的位置K,这个K的位置在:S[1。。 K-1]<=S[K]<=S[K+1..N],即在S[K]以前的数都小于S[K],在S[K]以后的数都大于S[K]; 3)、利用分治思想(即大化小的策略)可进一步对S[1。。K-1]和S[K+1。。N]两组数据再进行快速排序直到分组对象只有一个数据为止。 如具体数据如下,那么第一躺快速排序的过程是: 数组下标: 1 2 3 4 5 6 7 8 9 10 45 36 18 53 72 30 48 93 15 36 I J (1) 36 36 18 53 72 30 48 93 15 45 (2) 36 36 18 45 72 30 48 93 15 53 (3) 36 36 18 15 72 30 48 93 45 53 (4) 36 36 18 15 45 30 48 93 72 53 (5) 36 36 18 15 30 45 48 93 72 53 通过一躺排序将45放到应该放的位置K,这里K=6,那么再对S[1。。5]和S[6。。10]分别进行快速排序。程序代码如下: program kuaisu(input,output); const n=10; var s:array[1..10] of integer; k,l,m:integer; procedure qsort(lx,rx:integer); var I,j,t:integer; Begin I:lx;j:rx;t:s[I]; Repeat While (s[j]>t) and (j>I) do
Begin
k:=k+1;
j:=j-1
end;
if I
0 件のコメント:
コメントを投稿